MATH 1A - MOCK FINAL DELUXE

PEYAM RYAN TABRIZIAN

Name: _____

Instructions: This is a mock final deluxe, designed to give you an idea of what the actual final deluxe will look like.

Careful! The actual final deluxe might have very different questions!

1	10
2	10
3	10
4	15
5	20
6	15
7	20
8	30
9	10
10	10
Bonus 1	5
Bonus 2	5
Bonus 3	5
Total	150

Date: Friday, August 5th, 2011.

PEYAM RYAN TABRIZIAN

1. (10 points, 5 points each) Find the following limits

(a) $\lim_{x\to\infty}\sqrt{x^2+x}-x$

(b) $\lim_{x\to\infty} \frac{(\ln(x))^2}{x}$

2. (10 points) Use the **definition** of the derivative to calculate f'(x), where:

$$f(x) = \frac{1}{x}$$

PEYAM RYAN TABRIZIAN

3. (10 points, 5 points each) Find the derivatives of the following functions
(a) f(x) = x^{cos(x)}

(b) y', where $x^3 + y^3 = xy$

4

4. (15 points) A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder is sliding away from the wall at a rate of 1 ft/s, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?

PEYAM RYAN TABRIZIAN

- 5. (20 points) If $12\pi \ cm^2$ of material is available to make a cylinder with an open top, find the largest possible volume of the cylinder.
- 6

6. (15 points) Show that the following equation has exactly one solution in [-1,1]

$$x^4 - 5x + 1 = 0$$

7. (20 points) Use the **definition** of the integral to find:

$$\int_{1}^{2} x^{2} dx$$

You may use the following formulas:

$$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

8

- 8. (30 points, 5 points each) Find the following:
 - (a) The antiderivative F of $f(x) = x^2 + 3x^3 4x^7$ which satisfies F(0) = 1

(b) $\int_{-1}^{1} |x| dx$ (**Hint:** Draw a picture)

(c)
$$\int x^2 + 1 + \frac{1}{x^2 + 1} dx$$

(d)
$$\int_{1}^{e} \frac{(\ln(x))^2}{x} dx$$

(e)
$$g'(x)$$
, where $g(x) = \int_x^{e^x} \sqrt{1+t^2} dt$

(f) The average value of $f(x) = \sin(x)$ on $[-\pi, \pi]$

9. (10 points) Find the area of the region enclosed by the curves:

 $y = x^2 - 4$ and $y = 4 - x^2$

10. (10 points) If $f(x) = x \ln(x)$, find:

(a) Intervals of increase and decrease, and local max/min

(b) Intervals of concavity and inflection points

Bonus 1 (5 points) Show that if f is continuous on [0, 1], then $\int_0^1 f(x) dx$ is bounded, that is, there are numbers m and M such that:

$$m \le \int_0^1 f(x) dx \le M$$

Hint: Use one of the 'value' theorems we haven't used much in this course (see section 4.1)

Bonus 2 (5 points) If $f(x) = Ax^3 + Bx^2 + Cx + D$ is a polynomial whose coefficients satisfy:

$$\frac{A}{4} + \frac{B}{3} + \frac{C}{2} + D = 0$$

Show that f has at least one zero on [0, 1].

Hint: What is the *average* value of f on [0, 1]?

Bonus 3 (5 points) Another way to define $\ln(x)$ is:

$$\ln(x) = \int_1^x \frac{1}{t} dt$$

Show using this definition only that $\ln(ab) = \ln(a) + \ln(b)$.

Hint: Fix a constant *a*, and consider the function:

$$f(x) = \ln(ax) - \ln(x) - \ln(a)$$