MATH 1A - MOCK FINAL DELUXE

PEYAM RYAN TABRIZIAN

Name: \qquad
Instructions: This is a mock final deluxe, designed to give you an idea of what the actual final deluxe will look like.

Careful! The actual final deluxe might have very different questions!

1		10
2		10
3		10
4		15
5		20
6		15
7		20
8		30
9		10
10		10
Bonus 1		5
Bonus 2		5
Bonus 3		5
Total		150

1. (10 points, 5 points each) Find the following limits
(a) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x$
(b) $\lim _{x \rightarrow \infty} \frac{(\ln (x))^{2}}{x}$
2. (10 points) Use the definition of the derivative to calculate $f^{\prime}(x)$, where:

$$
f(x)=\frac{1}{x}
$$

3. (10 points, 5 points each) Find the derivatives of the following functions
(a) $f(x)=x^{\cos (x)}$
(b) y^{\prime}, where $x^{3}+y^{3}=x y$
4. (15 points) A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder is sliding away from the wall at a rate of 1 ft / s, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?
5. (20 points) If $12 \pi \mathrm{~cm}^{2}$ of material is available to make a cylinder with an open top, find the largest possible volume of the cylinder.
6. (15 points) Show that the following equation has exactly one solution in $[-1,1]$

$$
x^{4}-5 x+1=0
$$

7. (20 points) Use the definition of the integral to find:

$$
\int_{1}^{2} x^{2} d x
$$

You may use the following formulas:

$$
\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

8. (30 points, 5 points each) Find the following:
(a) The antiderivative F of $f(x)=x^{2}+3 x^{3}-4 x^{7}$ which satisfies $F(0)=1$
(b) $\int_{-1}^{1}|x| d x$ (Hint: Draw a picture)
(c) $\int x^{2}+1+\frac{1}{x^{2}+1} d x$
(d) $\int_{1}^{e} \frac{(\ln (x))^{2}}{x} d x$
(e) $g^{\prime}(x)$, where $g(x)=\int_{x}^{e^{x}} \sqrt{1+t^{2}} d t$
(f) The average value of $f(x)=\sin (x)$ on $[-\pi, \pi]$
9. (10 points) Find the area of the region enclosed by the curves:

$$
y=x^{2}-4 \quad \text { and } \quad y=4-x^{2}
$$

10. (10 points) If $f(x)=x \ln (x)$, find:
(a) Intervals of increase and decrease, and local max/min
(b) Intervals of concavity and inflection points

Bonus 1 (5 points) Show that if f is continuous on $[0,1]$, then $\int_{0}^{1} f(x) d x$ is bounded, that is, there are numbers m and M such that:

$$
m \leq \int_{0}^{1} f(x) d x \leq M
$$

Hint: Use one of the 'value' theorems we haven't used much in this course (see section 4.1)

Bonus 2 (5 points) If $f(x)=A x^{3}+B x^{2}+C x+D$ is a polynomial whose coefficients satisfy:

$$
\frac{A}{4}+\frac{B}{3}+\frac{C}{2}+D=0
$$

Show that f has at least one zero on $[0,1]$.
Hint: What is the average value of f on $[0,1]$?

Bonus 3 (5 points) Another way to define $\ln (x)$ is:

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

Show using this definition only that $\ln (a b)=\ln (a)+\ln (b)$.
Hint: Fix a constant a, and consider the function:

$$
f(x)=\ln (a x)-\ln (x)-\ln (a)
$$

